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Abstract. Studies using both polarised and unpolarised neutrons have been performed on 
single crystals of the Laves phase intermetallic compound UFe,. We describe studies of the 
twinning characteristics (two crystals with a common (1.1,l) axis) of our sample, a feature 
that is probably common in these cubic compounds. We then describe studies with polarised 
neutrons to determine the magnitude of the spin and orbital moments on the uranium site. 
In agreement with a recent theoretical prediction these two moments are found to be almost 
equal, but oppositely directed in real space. The net moment at the U site is only 0.01 pB. 
The polarised neutron experiments also allow us to put an upper limit on any possible 
anisotropy in the magnetisation. High-field magnetisation experiments up to (20 T)  on the 
same crystal as used in the neutron experiments allow us to determine the conduction- 
electron polarisation. 

1. Introduction 

Recent advances in band-structure calculations (Eriksson et a1 1986, Boring et a1 1987) 
have permitted a realistic treatment of intermetallic compounds containing 5f actinide 
elements (U, Np, Pu, etc) and the magnetic 3d transition elements (Mn, Fe, CO and Ni). 
These calculations suggest that the 5f electrons are itinerant in nature and often hybridise 
strongly with the itinerant 3d electrons. Furthermore, the calculations can predict the 
lattice parameters, whether the compounds exhibit spontaneous magnetic order or not, 
and compound properties such as the bulk moduli. To examine the microscopic magnetic 
properties Brooks et a1 (1988) have succeeded in adding spin-orbit coupling into the 
band-structure calculations. This results in good agreement between theory and experi- 
ment (Franse 1983) for properties such as total moment, electronic specific-heat coef- 
ficient and the pressure dependence of the magnetic moment in, for instance, UFe2. In 
addition, Brooks et a1 (1988) have recently made an important prediction concerning 
the magnetic moment at the uranium site. They find that the hybridisation reduces 
disproportionately the orbital moment, which usually dominates the total moment in 
1 1  Present address: Laboratoire de Diffraction Neutronique, DCpartement de Recherche Fondamentale, 
CENG, 85-X-38041, Grenoble Ctdex, France. 
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uranium compounds, and because of this the orbital moment is predicted to become 
comparable to the spin moment in UFe2. Furthermore, the net spin and orbital moments 
are directed antiparalie1 in U compounds so that the prediction for UFe2 is that the small 
moment known to be present on the U site (Yessik 1969, Lander et aZ1977) comes from 
the almost complete cancellation of two larger, but oppositely directed, components. 

These predictions, particularly those concerning the cancellation of the spin and 
orbital moments, led us to re-examine UFe2 and to search for this effect with neutron 
scattering. We have, indeed, found such a dramatic cancellation with pl = 0.23(1) pB 
and p, = -0.22(2) pB for the orbital and spin components, respectively. The magnetic 
form factor corresponding to this ‘cancellation’ effect has a most unusual shape, and 
brief reports of this have been published (Wulff et a1 1989a, b). In this paper we discuss 
the experiments in more detail, and in particular how we dealt with the existence of 
‘twinning’ in our crystals. Although normally a disadvantage, by understanding this 
mechanism we were able to use it to make detailed investigations of the magnetic 
anisotropy in UFe2. 

2. Unpolarised neutron study 

UFe2 crystallises in the cubic FCC Laves phase and is ferromagnetic below 160 K. The 
neutron study was performed on a single crystal cut from a larger boule grown by the 
Czochralski technique. Prior to the polarised neutron study, the crystal was completely 
characterised using the four-circle diffractometer situated at the DR3 reactor at Riso 
National Laboratory, Denmark. The crystal was found to be perfectly twinned along a 
( l , l , l )  axis with two nearly equally sized twins (A and B) turned 60“ relative to each 
other (see figure 1). This type of twinning is not uncommon in FCC crystals (see, e.g., 
Steigenberger etaZl986, Giebultowicz etaZl989), although one usually selects untwinned 
crystals for diffraction studies because the data analysis is more straightforward. How- 
ever, for the polarised neutron study of Wulff et aZ(1989a) it was not possible to get a 
sufficiently large untwinned crystal of UFe2, and therefore a complete understanding of 
the geometry of the twinned crystal was necessary. Below we give details of the four- 
circle study and the subsequent analysis. The analysis shows that it is possible, with 
reasonable accuracy, to perform a full least-squares refinement of a set of structural data 

11111 
A 

I1111 
A 

Twin A Twin 6 

Figure 1. Illustration of the relative orientation of the main cubic axes of twin A and B. The 
twin axis is the [ 1,l ,l] body diagonal. 
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collected on a twinned crystal. In $2 .1  we outline some fundamental geometrical 
properties of twinned face-centred cubic crystals, which may be useful in similar studies. 
From a crystallographer’s point of view, the analysis may seem straightforward because 
of the relatively simple crystal structure of UFe2. However, for a study of the magnetic 
structure, the description of the analysis is important. The reason for this is that in 
magnetic studies it is common to apply a magnetic field along a particular crystallographic 
axis. If the crystal is twinned, the result may then be that the field is applied along 
different crystallographic axes in the different twin components and this causes the 
magnetic response to differ for the different twin components. Therefore, data analysis 
without a complete understanding of the twinned crystal may be misleading, particularly 
if the system is magnetically anisotropic. 

2.1 .  Transformation from a cubic to a hexagonal unit cell 

As mentioned above, twinning in face-centred cubic crystals is rather common and often 
found in the large crystals used for neutron diffraction experiments; the twin axis is 
usually a (1,1,  1) axis. Either perfect or imperfect twinning occurs. In the latter case the 
twin axes are slightly misaligned, and the twinning may be observed easily because some 
of the Bragg peaks will be split in some directions of reciprocal space. In the former 
case, the twin axes are perfectly aligned, and twinning may be difficult to detect in a 
large mosaic crystal, especially if the detailed crystal structure is unknown. 

For UFe2 the twinning was found to be perfect in the sense defined above. In order 
to check experimentally for this kind of twinning, it is useful to describe the FCC cell in 
terms of the corresponding hexagonal close-packed pseudo-cell and search for reflec- 
tions which are allowed by the hexagonal symmetry but forbidden by the cubicsymmetry. 
If such reflections are observed, they will be evidence of perfect twinning provided the 
crystal structure of the untwinned crystal is face-centred cubic. Below we derive the 
tools necessary to transform the unit cell of the original cubic crystal (twin A) to the 
corresponding cubic cell for twin B via a hexagonal pseudo-cell which combines both 
twins. 

Figure 2 defines the FCC unit cell with a,  = b, = c,. It also shows the axes of the 
hexagonal pseudo-cell for twin A, a t  = b t  and c f  with the [ 1,1 ,1]  axis as the twin axis. 

Figure 2. Definition of the FCC unit cell (a, = 6 ,  = 
c,) and the axes of the hexagonal pseudo-cell for 
twin A ( a t  = 6 %  = d 2 / 2  a, and c t  = d 3 a , )  for 
a [1,1,1] twin axis. For twinA the hexagonal axes 
are given by a$ = ba, - tb,, 6 ;  = $6, - bc, and 

\ c t  = a, + 6 ,  + c,. 
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Figure3. Illustration of the orientations of (a) twin A and ( 6 )  twin B in the hexagonal pseudo- 
cell. The full circles are visible atoms of an FCC structure, the dotted circles are hidden atoms 
of an FCC structure. 

For twin A ,  the hexagonal axes are given by 

cf = a, + b,  + c,. (1) a A  h = 1 2ac - i b ,  bf = ab, - ic, 

However, we could equally well have chosen 

a B  h - - L 2ac - fc, b: = - +ac + ab, c: = a, + b,  + c, (2) 
which corresponds to a 60" rotation around [1,1,1] of the basal plane axes (a ; ,  b f ) .  The 
set of axes (a! ,  b! , cp) defines twin B. Figure 3 shows the orientations of twins A (figure 
3(a)) and B (figure 3(b) )  in the same real-space hexagonal pseudo-cell. Aperfect [1,1,1] 
twin may be visualised as a random stacking of twin-A and twin-B unit cells. 

From equations (1) and (2) it is easy to deduce the matrices transforming the cubic 
Miller indices of twins A or B to the Miller indices of the hexagonal pseudo-cell ({A}* 
and {A}B) and vice versa ({B}* and {B}B). The resulting matrices are quoted in the top 
part of table 1. Also quoted in table 1 are the equivalent matrices for other choices of 
the common ( l , l , l ) - type twin axis. Another useful set of transformation matrices is 
quoted in table 2. The matrices {C} and {D} may be used to transform the cubic Miller 
indices of the cubic twin-B unit cell to Miller cubic indices of the cubic twin-A unit cell 
andviceversa. For acommon [1,3,1] twin we find, asexpected, that the (1,1,1) reflection 
of twin B will overlap with the (1 ,1,1) reflection of twin A. 

Using the matrices quoted in tables 1 and 2, it is easy to calculate the Miller indices 
of, for instance, twin A either in terms of the unit cell for twin B or in terms of the 
hexagonal pseudo-cell. By means of table 1, it is easily verified, for example, that for a 
[ 1,1,1] twin axis the (1,1,1) cubic reflection for both twin A and twin B transforms to the 
(0,0,3) hexagonal reflection, whereas the (i,l,l), (l,i,l) and (1,1,i) cubic reflections of 
twin Atransform to the ( i , O , l ) ,  (l,i,l) and (0,1,1) hexagonalreflectionsandthe (i,1,1), 
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Table 2. Transformation of cubic twin-A Miller indices to cubic twin-B Miller indices and 
vice versa. 

Common cubic axis Twin B -+ twin A, {C} Twin A-+ twin B, {D} 

111 213 -113 213 213 213 -113 
213 213 -113 -113 213 213 

-113 213 213 213 -113 213 

111 213 113 -213 213 -213 113 

1/3 213 213 -213 -113 213 

iii 213 113 213 213 -213 -113 
-213 213 113 113 213 -213 
-113 -213 213 213 113 213 

- 

-213 213 -113 113 213 213 

1 ii 213 -113 -213 213 213 113 
213 213 113 -113 213 -213 
113 -213 213 -213 113 213 

( l , i , l )  and (l,l,T)cubicreflectionsoftwinB transformto the ( i , l , l ) ,  (O,i,l) and(l,O,l) 
hexagonal reflections. This means that both twins contribute to the Bragg scattered 
intensity observed in the ( l , l , l )  cubic reflection while only one twin contributes to the 
intensity of the (i , l , l)- type cubic reflections. However, if the twins have equal size, 
there will be apparent six-fold symmetry around the [1,1,1] twin axis ([0,0,3] hexagonal 
axis). 

Table 3. Examples of Miller indices for twin-A reflections transformed to Miller indices of 
twin-B unit cell and the hexagonal pseudo-cell for a [ l l i ]  twin axis. 

Cubic Cubic Hexagonal 
twin-A cell twin-B cell cell 

1 1 1 -113 513 113 -1 1 1  
-1 1 1 -513 113 -113 0 1 -1 

1 -1 1 1/3 113 513 -1 0 -1 
1 1 -1 1 1 -1 0 0 3  
3 3 3  -1 5 1 -3 3 3  

-3 3 3 -5 1 -1 0 3 -3 
3 -3 3 1 1 5 -3 0 -3 
3 3 -3 3 3 3 0 0 9  

0 2 2  -2 2 0 -1 2 0  
2 0 2  0 2 2 -2 1 0  
2 -2 0 2 0 2 -1 -1 0 

2 2 0 213 813 -213 -1 0 4  

0 2 -2 213 213 -813 1 0 4  
2 0 -2 813 213 -213 0 -1 4 
4 0 0 813 813 513 -2 0 4  
0 4 0 -513 813 813 0 2 4  
0 0 4 -813 513 813 -2 2 -4 
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The use of table 2 is illustrated in table 3 for a [ l , l , i ]  twin axis, which is the twin axis 
in the present experiment. Inspection of this table shows that the reflections of twin A 
will be described by either integer or non-integer Miller indices of the cubic twin-B cell. 
Reflections from twin A of the latter type will of course not coincide with reflections 
from twin B. However, reflections from twin A of the former type will coincide with 
reflections from twin B, but not necessarily with the same type of reflections. Note for 
instance that in the cubic notation, the (3,3,3) twin-A reflection will coincide with the 
(i,5,1) twin-B reflection while the (3,3,3) reflections from both twin A and twin B 
coincide. 

We have now derived the necessary transformations (tables 1 and 2) and in the 
following we will consider the four-circle measurements on UFe2 and the subsequent 
analysis. 

2.2.  Experimental details for the x-ray and the unpolarised neutron studies 

A small crystal cut from the large UFe2 boule was used in an x-ray study. The results of 
this study agreed well with the cubic FCC Laves phase structure Fd3m (ao = 7.055(2) A) 
withtheuatomsinthe (8a)positions(1/8,1/8,1/8;7/8,7/8,7/8; + FCC) andtheFeatoms 
in the (16d) positions (1/2,1/2,1/2; 1/2,1/4,/1/4; 1/4,1/2,1/4; 1/4,1/4,1/2; +FCC). The 
R factor for the x-ray study was 2.1%, allowing little doubt that, for the crystal used in 
the x-ray study, the cubic Laves phase is the correct structure at room temperature. In 
addition, a powder x-ray study showed no extra lines which indicated that the material 
was single phase. 

The single crystal used for the neutron study was cut from the same boule of UFe2 
as that used for the x-ray study. It was cut as a cylinder of -4 mm diameter and -3 mm 
height and mounted with the cylinder axis parallel to the w axis of the four-circle 
instrument. The cylinder axis is close to, but not exactly parallel to, a (111)-type crystal 
axis. Two different unpolarised neutron studies were made, a room-temperature crys- 
tallographic study and measurement of the temperature dependence of the intensity in 
selected Bragg peaks. For the latter experiment the crystal was mounted at the four- 
circle in a Displex cryostat (Henriksen et a1 1986). This allowed data collection from 
room temperature down to 10 K and made it possible to study the temperature variation 
of the magnetic moment in UFe2 (see 0 4 and figure 8). 

The purpose of the room-temperature study to be described in the remaining part of 
B 2) was to characterise the crystal and determine the stoichiometry. The crystal was 
easily oriented with well shaped gaussian Bragg peaks (figure 4).However, on comparing 
the intensity of equivalent reflections (h ,  k, I ) ,  the intensities generally fell into two 
groups, one group with strong peaks and one with weak peaks. The ratio between the 
intensity of the two groups of equivalent reflections was close to two, and Friedel pairs 
had equal intensity within statistics. A few examples of measured intensities are quoted 
in table4. When comparingthe intensities of thefour( l , l , l )  (or four (2,2,2)) reflections, 
it seemed relevant to conclude that the crystal has a preferred [1,1,1] cubic axis with 
apparent three-foldsymmetry. Asystematicsearchat ( U ,  20) for (2,2,0)-type reflections 
with x fixed (-92" ( x ) 43" in steps of 6") and Q, varying from 180" to - 179" for each 
setting of x resulted in finding seven pairs of reflections related by Friedel's law and two 
reflections for which the Friedel-related reflections were outside the X-range covered by 
the systematic scans; i.e. the systematic search revealed nine pairs of reflections (three 
strong, six weak) which could be indexed as (2,2,0)-type reflections, not six pairs as 
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Figure 4. Examples of Bragg reflections in the UFez crystal used in the neutron study. The 
Miller indices for both the FCC cubic cells (c) and the HCP pseudo-cell (H) are given. The top 
two curves show pure twin-A reflections, the middle two show pure twin-B reflections and 
the bottom two curves show reflections where both twins contribute to the scattering. The 
full curves are fits to gaussian line shapes. The pure twin-A or twin-B reflections are slightly 
wider than the combined reflections (see text). 

Table 4. Examples of observed structure factors Fib, in the UFe,. The observed intensities 
have been corrected for absorption using p = 0.61 cm-I. The Miller indices refer to a cubic 
lattice of the twin-A cell. The numbers in parentheses are the statistical uncertainties. 

hkl F,:,, hkl Fibs hkl Fib,  

111 
111 
iii 
1 i i  

220 
022 
202 
220 
022 
202 

400 
040 
004 

- 

- 

48.5(.5) 

.500(5) 
900(.5) 

2790( 1.5) 
4120(1.5) 
4230( 1.5) 
439.5(1.5) 
2480( 1.5) 
2S30( 10) 

3910(20) 
371.5(1.5) 
3695(20) 

.500(.5) 
222 
222 
- 

222 
222 

440 
044 
404 
470 
044 
404 

800 
080 
008 

- 

10.525(3.5) 
llOSO(30) 
10290(35) 
1791.5(35) 

18860(60) 
3 1360(60) 
3178.5(55) 
33740(60) 
19280(60) 
19 180( 40) 

16390(66) 
16040( 60) 
15630(70) 

333 
333 
333 
335 

- 

660 
066 
606 
660 
066 
606 
- 

116S0(40) 
12000( 30) 
1 1480( 40) 
11870(30) 

236.5(2.5) 
213.5(20) 
2040(20) 
21 3S(20) 
241.5(25) 
2380(20) 
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expected for the cubic symmetry. This could indicate either twinning or a change of 
symmetry from cubic to hexagonal. 

2.2.1. Change of symmetry. Although the x-ray study seemed to support the assumption 
of cubic symmetry, let us consider for a moment the change to hexagonal symmetry. 
Transforming the FCC cubic cell with lattice constant a, to a hexagonal cell results in a 
hexagonal cell with ah = bh = d2/2a,  andc, = d 3 a , ,  with the hexagonal axis (eh)  parallel 
to the preferred (17171) axis, and the basal-plane hexagonal axes ah and bh parallel to the 
(1 , i , O )  and (1 , O , i )  cubic axes perpendicular to the preferred cubic axis. Using a hexagonal 
cell given by a = b = 4.989 A and c = 12.220 A,  an orientation matrix (UBMA)? could 
be calculated and the nine pairs of (2,2,0)-type cubic reflections could indeed be indexed 
in the hexagonal cell, either as (l,l,O)-type or as (1,0,4)-type hexagonal reflections. A 
set of about 1500 intensities was then collected at room temperature using the hexagonal 
orientation matrix. The incident neutron wavelength was 1.02 A. The intensities were 
measured as o - 26' scans with the %-circle bisecting the scattering angle 26. 

Table 5 .  Structure factors F2b, observed in the UFe, crystal with the spectrometer set at 
(28, o) for the (2,2,0)-type cubic reflection (see text). Using a hexagonal unit cell these 
reflections could be indexed as either (1,0,4)-type or (1,l.O)-type reflections (columns 1 or 
4). Using a cubic unit cell they could all be indexed as (2,2,0)-type reflections (columns 3 or 
6), but in this case the weaker intensities originate either from scattering by twin-A only or 
twin-B only, whereas scattering from both twin A and twin B contributes to the intensities 
in the strongest reflections. The numbersin parentheses are the statistical uncertainties. The 
cubic indices for the mixed reflections (marked (A + B)) refer to the twin-A cubic cell. 

hkl 
(hexagonal) F:h, 

hkl hkl hkl 
(cubic) (hexagonal) Fibs (cubic) 

104 2480( 15) 
014 1830( 15) 
- 114 2790(15) 
104 2085(10) 
o i 4  2530( 10) 
i i 4  1945( 15) 

- 
022(A) 110 4395(15) 220(A + B) 
02?(B) 210 4230(15) 202(A + B) 
220(A) 120 4120(15) 2?O(A + B) 
220(B) 
202(A) 
202(B) 

Several symmetry-related reflections were measured, and although the intensities of 
reflections related by the hexagonal symmetry (see table 5 )  agree better than when 
comparing the intensities of reflections related by the cubic symmetry, it is obvious that 
the intensity difference between, for instance, (1,0,4) and (0,1,4) (hexagonal indexing) 
is considerably larger than that expected from statistical errors alone. Hence, it follows 
that the symmetry of the UFe2 crystal cannot be hexagonal in complete agreement with 
the x-ray study. 

2.2.2.  Twinned crystal without change of symmetry. After having ruled out that there is 
a change of symmetry in UFe2 from FCC cubic to a HCP structure, let us consider the 
possibility of a twinned cubic crystal. Using a cubic cell with a = 7.055 A it was possible 
to find a cubic orientation matrix (UBMA) which could account for six of the (2,2,0)- 

t For a description of the U B  orientation matrix see Busing and Levy (1967). 
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type reflections found in the previously described systematic search. Another cubic UB 
matrix (UBMB) could account for the three remaining (2,2,0)-type reflections as well 
as three of the 2,2,0)-type reflections, which could also be accounted for by UBMA. 
Therefore, it is obvious that for the crystal symmetry to be cubic the UFe2 crystal must 
be twinned. In table .5 we list the observed structure factors in UFe2 for the nine (2,2,0)- 
type cubic reflections quoting both the hexagonal pseudo-cell indices and the cubic cell 
indices. The letters in parentheses indicate if either twin A or twin B or both twins 
contribute to the intensity of a particular reflection. In figure 4 we show as examples a 
few of the reflections in UFe2. The reflections to which both twins contribute have 
approximately twice the intensity of the one-twin-only reflections, and are somewhat 
narrower. The fact that the one-twin-only reflections are broader than the combined 
reflections is presumably a consequence of the disorder in the crystal planes contributing 
to the one-twin-only reflections. This disorder is caused by the stacking faults introduced 
by the twinning, a disorder which does not exist in the crystal planes contributing to the 
combined reflections. The line broadening is similar to the line broadening observed in 
the so-called OD structures (order-disorder structures) of the Dornberger-Schiff-type 
(see, e.g., Jagner et a1 1976 and references therein). 

2.3. Structure refinement of twinned UFez 

Having now established that the UFe2crystal is cubic and twinned, a structure refinement 
using the four-circle data could be performed. For this we used a modifed version of a 
standard crystallography program package (LINEX) supplied by the Department of 
Inorganic Chemistry, University of Aarhus, Denmark. The modifications were minor 
and only introduced to allow refinement of a twinned cubic structure. 

At first, the 1.500 reflections which had been collected at room temperature using the 
hexagonal UB matrix were converted to a set of 1.500 reflections with cubic Miller 
indices. During this process each reflection was assigned a number ( N )  which indicates 
if the reflection is a twin-A-only reflection ( N A  = l ) ,  a twin-B-only reflection ( N B  = 4) 
or a combined reflection (NAB = 2). In the same process the intensities were corrected 
for absorption using a linear absorption coefficient of 0.61 cm-'. Assuming a cubic Laves 
phase structure, a full-matrix least-squares refinement including isotropic extinction and 
anisotropic temperature factors was performed. In the refinement we allowed the 
scattering amplitude of the U atoms (b"),  the extinction parameter ( R )  and the tem- 
perature parameters ( B L ,  Bge) to vary. In addition the three scale factors SF,, SFB and 
SFA+B were allowed to vary with the constraint SF,+, = a(SFA + SF,). The scale 
factors are multipliers to the calculated intensities, in order to make the calculated 
intensities directly comparable to the measured intensities. This means that SFA and 
SFB are proportional to the volumes of twin A and twin B, respectively, and ideally a = 
1. However, a better fit was obtained if a was allowed to vary during the refinement 
giving a = 1.18 for the best fit. In other words, the observed intensity of the one-twin- 
only reflections is too small when compared with the observed intensity of the mixed 
reflection. In order to explain this, we should again consider the disorder of the atoms in 
the crystal planes contributing to the one-twin-only reflections. As mentioned previously 
the disorder gives rise to line broadening which is included in the integrated peak 
intensity. However, the disorder will also give rise to diffuse intensity streaks which will 
result in increased background in some directions of reciprocal space. This diffuse 
intensity is not included in the measured peak intensity used in the refinement, and 
hence the one-twin-only reflections will be comparatively weaker than the mixed reflec- 
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Table 6.  Results of structure refinement of 1500 reflections from twinned UFe, at room 
temperature using bFe = 0.954 x cm. For a stoichiometric sample of UFe2, bv = 
0.8417 x lo-'* cm. The extinction is less than 20% for the most extinct reflections, and 
typically between 5-10%. The index on the scale factors refers to the type of reflection. 

Scattering amplitude 
b" (0.843 2 0.003) lo-', cm 

Temperature factors (300 K) 
BL (0.91 k 0.01 ) A* 
BF, (0.71 2 0.01) A* 

Scale factors 
SFA 
SFB 
a 

(7.8 t 0.03) 
(6.9 2 0.02) 
(1.18 2 0.01) 

2.7% 
2.5% 
3.5% 
5.5% 

tions. This phenomenon is also commonly observed in the OD Dornberger-Schiff (1966)- 
type structures. 

After a few cycles, the refinement converged with an R factor for IF1 of R ( F )  = 
2.7% ( R ( w F )  = 2.5%). The resulting parameters are listed in table 6. We find bU = 
(0.843 k 0.003) X cm 
(Boeuf et a1 1982), we find that the stoichiometry is (1.0015 * 0.0035), i.e. the UFe2 
crystal is stoichiometric. The effect on the structural parameters of introducing the factor 
cx were investigated in some detail by performing separate refinements of the data for 
twin-A-only, twin-B-only and mixed reflections. These refinements led to structural 

cm. Using the accepted value for bU of 0.8417 x 

parameters similar to those quoted in table 6 with slightly better R factors ( R ( F )  = 
1.5%). 

3. Polarised neutron experiments 

3.1. Experimental details for  the polarised neutron study 

The polarised neutron experiments on the single crystal of UFe2 were performed at the 
OrphCe reactor, Laboratorie Leon Brillouin, Saclay, France. For this experiment we 
used the same crystal as that used in the unpolarised neutron study. The crystal was 
mounted in a superconducting vertical field cryo-magnet. A magnetic field of 2 T was 
applied along the vertical axis of the cylindrical crystal. The temperature was 10 K and 
the neutron wavelength 0.865 A. The experiment consists of measuring the flipping 
ration R between Bragg intensities first with neutrons polarised (P) along the field H and 
then along - H .  A total of 110 flipping ratios were measured in the range 0.12 A-' C sin 
O/A S 0.67 A-l. The R values were corrected for incomplete polarisation (PI  = 0.980) 
and for extinction based on the parameter extracted in 8 2.3. The final averaged yvalues, 
where y = M / N  is the ratio of the magnetic to the nuclear structure factors, are given in 
table 7 .  
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Table 7. Summary of polarised neutron data for UFe, at 10 K and 2 T. N is the nuclear 
structure factor per formula unit of UFe2, y is determined experimentally, M is determined 
from equation (3) using b, = 0.8417 x cm and bFe = 0.954 x lo-’’ cm and have been 
corrected for isotropic temperature factors and extinction. The product pf(Q) for iron is 
derived assuming / lF , f (Q)  = pF, ( jo (Q) ) ,  with p = 0.60(1) pB and (io) is taken for the Fe2+ 
configuration. The uranium amplitude ,uf(Q) is shown in figure 6. The nuclear structure 
factor N attains the values in order of increasing strength a = bFe - b,/d2, b = b,, c = 

2bF, - bL, d = bFe + b, /v2 ,  e = 2bF, and f = 2bF, + b,. 

111 0.123 
220 0.200 
311 0.235 
222 0.245 
400 0.283 
331 0.309 
422 0.347 
511 0.368 
333 0.368 
440 0.401 
531 0.419 
620 0.448 
533 0.465 
622 0.470 
551 0.506 
642 0.530 
553 0.544 
731 0.544 
660 0.601 
751 0.614 
662 0.618 

U 

-b 
-d 

e 
C 

-U  

b 
d 
d 

-a  
b 

e 
a 

f 

- d  

-b 
- d  
- d  
-b 
- d  

e 

0.378(7) 
0.0128(5) 
0.071 (2) 
0.103(2) 
0.137( 4) 
0.164( 4) 
0.016(1) 
0.041 (2) 
0.038( 2) 
0.038(1) 
0.090(7) 
0.015( 3) 
0.023 (1) 
0.034( 2) 
0.053(3) 
0.009( 2) 
0.015( 2) 
0.0 17( 2) 

0.009( 2) 
0.0 1 0( 2) 

0.010(2) 

0.50 (1) 0.516 
- 0.040(2) 
-0.41 (1) 0.367 

0.73 (2) 0.353 
0.54 (2) 0.299 

0.051 (3) 
0.23 (1) 0.196 
0.22 (1) 0.196 
0.39 (1) 0.166 

0.048( 8) 

0.24 (1) 0.112 
0.070(4) 0.090 

-0.218(5) 0.265 

-0.12 (1) 0.148 

-0.135(6) 0.115 

-0.028(6) 
-0.09 (1) 0.070 
-0,010 (1) 0.070 
- 0.031 (6) 
-0.05 (1) 0.042 

0.07 (1) 0.041 

0.018(7) 
0.040(2) 
0.06 (1) 

0.05 (1) 
0.067( 8) 
0.051 (3) 
0.05 (1) 
0.03 (1) 
0.06 (1) 
0.046(9) 
O.048( 8) 
0.028( 8) 

0.028( 5) 
0.028( 6) 
0.03 (1) 
0.04 (1) 
0.03 1 (6) 
0.01 (1) 

3.2. Examination of the magnetic anisotropy 

The correct expression for the flipping ratio is 

R = [ N 2  + 2(P * q)NM + (4 * q ) M 2 ] / [ N 2  - 2(P * q)NM + (4 * q ) M 2 ]  (3) 

(4) 

where P is the neutron polarisation vector and 

q =  Q X (P  X Q )  
is the magnetic interaction involving the unit scattering vector Q and the precise direction 
of the magnetic moment through the unit vector fi along the moment direction. Equation 
(4) selects the component of the magnetisation perpendicular to the scattering vector 
Q .  Recallthat IQ/ = 4 nsin O / A ,  where OistheBraggangleandA theneutronwavelength. 
For a more complete description of the consequences of equation (3) see Wulff et a1 
(1988), where we have exploited the geometrical properties of equation (3) to prove the 
extremely high anisotropy of PuFe2. In this latter compound the moments are locked 
along the (1,0,0) axis closest to the applied magnetic field. 

In UFe2 we are working with a twinned crystal so the situation is more complex than 
in PuFe2 (Wulff et a1 1988). Let us first examine a set of Bragg reflections from twin A 
alone. The question is whether the magnetic moments are parallel to the field direction 
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or to the closest (l,l,l) axis, which in this case is only 7.5" away from the field. Because 
the values of y should depend only on the Miller indices, the method of doing this is to 
examine the consistency of the y values for a particular set of nominally equivalent 
(h,k, l )  values, but with different assumptions as to the direction of f i  in equation (1). 
The y ( H )  values, i.e. those values derived by assuming pllHfor the individual reflections 
from twin A (marked A), twin B (marked B, non-integer cubic Miller indices) or from 
mixed reflections (marked A + B) in the (2,2,0) and (3,1,1) sets are given in table 8. It 
can immediately be seen that the y values are extremely consistent. As shown in Wulff 
et a1 (1989b) the x2  values for the (3,1,1) twin-A reflections is 2.8 for pllH, whereasX2 = 
17 for pl/[l,T,l]. This shows that p/IHfor twin A.  The same analysis may be performed 
for twin B or for the mixed reflections, showing beyond all doubt that p.)lH in the whole 
crystal. This is in spite of the 31" betweenH and the nearest (l,l,l) axis in twin B. 

By examining reflections from the U and Fe sublattices separately we may determine 
if they behave differently (see Wulff et a1 1988); but we find, as expected, that both the 
uranium and iron moments in UFe2 are directed along the applied field direction. UFe2 
is thus magnetically soft in agreement with Popov et a1 (1980). These authors show that 
although UFe2 exhibits a rhombohedral distortion of approximately 40% of that found 
in NpFe2 (Knott et a1 1980), the magnetic anisotropy is extremely small. The easy axis 
is indeed (l,l,l), but the magnetic anisotropy constant K 1  = - lo6 erg cm-3 at 10 K. 
This value is comparable to that found in pure Fe and approximately three orders of 
magnitude less than the low-temperature values found for TbFe2 ( - 5  X lo* erg ~ m - ~ )  
or estimated for NpFe2 (-10 x lo9 erg ~ m - ~ ) .  It might be mentioned that although 
the rhombohedral distortion is large it is too small to be observed at the neutron 
diffractometers used for the present measurements. 

Table 8. Individual values of R (flipping ratio), q2 (interaction vector, see equation (4)) and 
y ( H )  where pllH in equation 4. The average values for twin A, twin B and the mixed 
reflections are given in the last column. The structure factor per formula unit is bu for the 
(2,2,0) and b,/d2 + bFe for the (3,1,1). 

hkl Twin Robs q2 Y Mean-value y 
_ _  
220 A 
220 A 
202 A 
213313 213 B 
022 A + B  
022 A + B  

131 A 
113 A 
113 A 
3 IT A 
5/35/3713 B 
713 _ 113 713 B 
113 A + B  
131 A + B  
311 A + B  
3 i i  A + B  
131 A + B  

_ _  
_- 

__- 

1.046(3) 
1.045(5) 
1.044( 4) 
1.031 (6) 
1.053(3) 
1.045(4) 

1.205(4) 
1.216(2) 
1.182(5) 
1.243( 3) 
1.202(4) 
1.261(7) 
1.273( 2) 
1.271 (3) 
1.156( 4) 
1.159(3) 
1.269(2) 

0.9866 
0.9866 
0.9883 
0.8445 
0.999 
0.9999 

0.8246 
0.8190 
0.7251 
0.9100 
0.7959 
0.9969 
0.9867 
0.9896 
0.6198 
0.6280 
0.9896 

0.013(1) 
0.012(1) 0.013(1) 
0.013(1) 

0.014(1) 0.013(1) 
O.OlO(2) O.OlO(2) 

0.012(1) 

0.068( 1) 
0.071 (1) 0.070(2) 
0.069( 1) 
0.072(1) 
0.069( 1) 0.069( 1) 
0.069( 1) 
0.073( 1) 
0.072(1) 
0.070(1) 0.072(1) 
0.07 1 (1) 
0.072(1) 
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We are readily able to verify that K1 is indeed small by examining the terms giving 
the magnetic anisotropy. The energy is given by 

E = ~ , ( a : a ;  + a;a: + .;a:) - ~ . H ~ O S  e ( 5 )  
where ai are direction cosines between the moment direction and the three cube axes. 
In equation ( 5 )  K 1  is the leading anisotropy term: 

K 1  = KY + AKPe (6) 
where KP is the intrinsic anisotropy and A K T  is the magneto-elastic contribution. The 
applied field is H and 8 is the angle between H and the magnetic moment p. If we 
neglect higher-order terms and use units of K mol-' (note that 1 pB = 0.93 X EMU) 
equation (4) gives 

E = -0.313C - 1.44 cos 8 K molp1 

where C is the product of direction cosines defined in equation (5). As is well known, 
C = 1/3forpII(l,l,l)and hasitsminimumvalueofzeroforp~~(l,O,O). We haveusedp = 
1.09 pB mol-' as measured by Aldred (1979) and an applied field of 2 T. 

As can be readily seen from equation ( 5 )  the second term dominates and the minimum 
energy is thus when 6 = 0, plIH. Thus in both twin A, where the angle between the field 
andthenearest(l , l , l) is  -8", andintwinB, where theangleis31.5", themoment rotates 
to be parallel toH.  Unfortunately, our data do not allow us to give a reliable upper limit 
of K1,  but an estimate is lKll 6 5 X lo6 erg ~ m - ~ .  Clearly, this method of investigation 
may be applied to other systems where for large lKII values the moment might be 
expected to lie midway between H and the easy axis. 

Popov et aZ(l980) have gone further and shown that A K Y  must be large because of 
the large spontaneous rhombohedral distortion in UFe2. They quote A K Y  = -8 X lo6 
erg cm-3 at 5 K. From equation (4), KY = $7 x lo6 erg ~ m - ~ .  As discussed by Clark 
(1980) the ratio AJP/JY is normally less than 0.25, but it is greater than 1 in UFe2. This 
is what is unusual in UFe2 and further investigation of this point by other microscopic 
techniques would seem worthwhile. It may also be a point worth considering from the 
viewpoint of the band-structure calculations. Certainly, through its coupling to the 
lattice, the small orbital moment of 0.23 pB is primarily responsible in driving the 
rhombohedral distortion. 

3.3. Determination of the magnetic moments and the form factors 

The magnetic structure factors listed in table 7 may be separated into contributions from 
the Fe and U sublattices. We plot the magnetic scattering amplitude for the Fe sublattice 
as a function of Q in figure 5 .  The full curve is the experimental form factor for elemental 
Fe (Shull and Yamada 1962, Shull and Mook 1966) which, when fit to the points, 
extrapolates to 0.60(1) pB per Fe atom. We note that the iron atom in the Laves phase 
is not at a site of cubic symmetry (Givord et a1 1980) so that a factor ( j 2 )  must be included 
in the analysis. This arises from any small orbital moment on the Fe atom. We have 
included this in our analysis and find that the orbital moment at the Fe site is +0.01(2) pB. 
This is lower than the value of +0.07 pB calculated by Brooks et al. (1988). In our further 
analysis we neglect any orbital contribution at the Fe site. Note that the open circles 
have a contribution from the Fe atoms only, and therefore are not subject to any 
uncertainty as to the contribution from the U sublattice. This value of 0.60(1) pB is in 
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Scattering vector, Q (A-’)  
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Figure 5.  Magnetic scattering amplitude from the Fe sublattice as a function of sin @/A. The 
full symbols have no contribution from the U sublattice. The full curve is that for Fe metal 
normalised to 0.60 p5. 

excellent agreement with that of 0.59(2) pB determined on polycrystalline material of a 
stoichiometric sample. Table 9 summarises the magnetic moments found in UFe2. 

The magnetic scattering amplitude for the U sublattice is shown in figure 6. As noted 
before, the form factor is highly unusual with an extrapolation at Q = 0 t o p  = 0 pB, and 
more details of the physics that this implies may be found in Wulff et a1 (1989a, b). For 

Table 9. Values for the different magnetic moments as discussed in the text. bU and pFe are 
the total moments on uranium and iron, respectively, Pspd  is the conduction-electron moment 
deduced using the total neutron moment and the magnetisation value of 0.965(3) p5 as 
deduced in the magnetisation experiment. pl and ps are the individual orbital and spin 
contributions to the U moment. 

Previous work 
Present Theory 

( P 5 )  a b work C 

PU 0.03(1) 0.06(1) O.Ol(1)  -0.11 
PFe 0.38(2) 0.59(2) 0.60(1) 0.80 
k p d  - -0.25(2) -0.09 

U atom 
PI - - 0.23(2) 0.47 
Ps - - -0.22(2) -0.58 

a Yessik (1969). 
Lander et a1 (1977). 
Brooks etal(1988). 
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Figure 6. The magnitude of the magnetic scattering on the U sublattice as a function of sin 
@/A ( = Q / ~ . T ) .  The extrapolation to Q = 0 gives the magnetic moment. The full symbols are 
from Bragg reflections coming from the U sublattice only. The open symbols come from 
Bragg reflections that have both U and Fe contributions, but the Fe contribution has been 
subtracted. The full central curve is the fit to equation ( 7 )  with the outer curves representing 
the limits defined by the error bars and the strong correlation between p and Cz, 

completeness we illustrate the analysis briefly here. In the dipole approximation 

pf(Q) = p s ( j d  + ~ d ( j t J  + ( j 2 ) )  (7) 

where p is the total moment, ,us is the spin component, normally 2(S) ,  ,U, is the orbital 
component, normally ( L ) ,  and ( j o ) ,  ( io) and ( j , )  are Bessel transforms of the single 5f 
electron charge-density distribution U&(Y) .  Since p = ,us + ,ul we rearrange equation (7) 
to give 

pf(Q) = P ( ( ~ o )  + G ( j 2 ) )  (8) 

where C2 = p,/p. The functions (io) and (j,) are tabulated by Desclaux and Freeman 
(1978) so that we may readily least-squares refine the experimental values of pf(Q), the 
magnetic scattering amplitude, against p and Cz. Unfortunately, the shape of this curve 
leads to strong correlations between p and C2, and we illustrate the best fit and two 
extremes in figure 6. We find p = O.Ol(1) pB and C2 = 23(1), leading to ,u1 = 0.23(1) pB 
and ps = -0.22(2) pB in equation (7). 

It is important to emphasise that the full symbols in figure 6 come from the U 
sublattice only, and using them alone gives the same values for ,ul and p,. For the other 
points the Fe contribution must be subtracted. Since the Fe contribution is much larger 
(by a factor of at least ten at most Q values) the assignment of error bars in figure 6 has 
to be treated with caution. As an example we have tried analysing for an asymmetric 
form factor on the Fe site as suggested by Yessik (1969), but find that it is not statistically 
significant. The same situation was found for PuFe, by Wulff et a1 (1988). However, it 
is known from work by Aldred (1979) on Yessik’s UFe, crystals that they were non- 
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stoichiometric so his UFe2 form factors do not necessarily agree with our form factors 
for stoichiometric UFe2. Nevertheless, the distribution of points in figure 6 does appear 
to indicate asphericity in the uraniumf(Q). Despite this, we do not presently find further 
analysis of our UFe2 data warranted. The reason for this is two-fold. Firstly, one 
should go further than the dipole approximation in equation (7), especially for sin e/ 
A > 0.4 A-'. Secondly, and perhaps more important, we believe it is necessary to re- 
examine the fundamental cross section that gives rise to equation (3). Equation (3) is 
based on the assumption that the total moment p is a scalar quantity independent of Q ,  
i.e. that the sum p = p, + ps is independent of Q .  In localised lanthanide systems this is 
a correct assumption. However, Brooks et a1 (1988) have shown that the 5f electrons are 
itinerant and that, whereas pl is a well defined quantity when integrated over the Brillouin 
zone, it may well vary in direction and magnitude for a particular Fourier component. 
This is clearly not a large effect, otherwise no smooth curve could fit the data of figure 
6, but without further theoretical consideration of this point it is unreasonable to proceed 
with a more sophisticated analysis of the U form factor. 

4. Field and temperature dependence of magnetic moments 

We show in figure 7 the magnetic moment as a function of magnetic field as measured 
on an identical crystal (and orientation) to that used in the neutron study. These 
measurements were performed at the Service National des Champs Intenses, Grenoble. 

The moment induced by 2 T is 0.965(3) pB, which has to be compared with the 
neutron value of 2pFe + pu = 1.20(2) + O.Ol(2) = 1.21(3) pB. We note that the value of 
0.965 pB is lower than the value of 1.05 pB found by Aldred (1979) and that of 1,158 pB 
found by Andreev et a1 (1979). We have no simple explanation for this discrepancy. 
Aldred (1979) , who did a careful study of different crystals with different stoichiometries, 
also notes that all samples contain small amounts of free iron. We feel the discrepancies 
are rather large to be explained by such impurities, which would not affect the neutron 
results, but we cannot exclude them. As shown by Aldred (1979), the moment drops 
when one moves off stoichiometry but both our neutron refinement, the lattice par- 

1 I 

0 5 

Applied magnetic field ( T I  

Figure 7. Magnetisation against applied magnetic field at 10 K for the same crystal as used 
in the neutron study. The magnetic field was applied along the same axis as in the polarised 
neutron study, i.e. approximately 7.5" away from the [lil] axis of twin A (see text). 
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Figure 8. Temperature dependence of the reduced magnetic moment in UFe2 measured by 
unpolarised neutron diffraction. The data have been deduced from the integrated intensity 
of the (l,l,l) reflection. The nuclear scattering has been subtracted using a high-precision 
measurement of the flipping ratio at 10 K.  The full curve is the normalised S = 1/2 Brillouin 
function. 

ameter (x-ray data) and T, (see below) show that our sample is very close tp stoi- 
chiometry. It is interesting to note that our high-field susceptibility, as deduced from 
figure 7, is 6.4(5) X EMU g-l. This is in good agreement with the values between 
5 X EMU g-' given by Aldred, deduced with much lower 
magnetic fields. Such a high value of x in the ordered state is consistent with itinerant 
magnetism. 

In figure 8 we show the temperature dependence of the magnetic contribution to the 
( l ; l , l )  reflection. The data have been deduced from a set of unpolarised integrated 
intensities of the (1,1,1) reflection after subtracting the nuclear scattering contribution 
determined from a high-precision measurement of the flipping ratio of the ( l , l , l )  peak 
at 10 K. In reality the (l,l,l) measures a combination (pF, - 1 d 2 p u )  of the moment 
on the U and the Fe sublattices. However, measurements at 2 T  of the temperature 
dependence of the flipping ratios of the (2,2,0) peak, which measures the uranium 
moment only, and of the (2,2,2) peak which measures the iron moment only, show that 
within statistics the two moments have the same temperature dependencies. Therefore, 
it is justified to claim that figure 8 represents the temperature dependence of the total 
ordered moment in UFe2. The Curie temperature is seen to be 170(5) K, which is 
essentially the same as the value deduced by Aldred (1979) for stoichiometric UFe2. 

The theories of Brooks et a1 (1988) predict a different pressure effect for pl and ps, 
because the hybridisation is a function of interatomic spacing. However, the variation 
of the intra-atomic exchange interaction, which is responsible for the spontaneous 
ordering, is too small an energy to give measurable effects in pl and ps, so we would 
indeed expect the ordered moments on the two sublattices to behave similarly with 
temperature, as found by the flipping ratio measurements. 

EMU g-' and 9 X 

5. Conclusion 

This study was performed on a twinned crystal of UFe2 with two twins of roughly the 
same volume. Although not normally recommended for diffraction studies, we have 
been able to utilise the twinning to further investigate the magnetic anisotropy. 
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The crystal is shaped as a cylinder and cut from a large boule with a ( l , l , l )  axis 
(determined by x-rays) nearly parallel to the cylinder axis. However, this axis is not the 
twin axis. In fact, the twin axis lies nearly in the radial plane of the cylinder, about 70" 
from the cylinder axis, and the cylinder axis is 7.5" away from the [i,l,?] _ _ _  axis in twin A 
which is perfectly aligned with the [ 1,1,5] axis of twin B. For twin B, the [ 1,1,3] direction 
is only -2" away from the vertical field direction. In the polarised neutron study, the 
field was aligned along the cylinder axis, and the field was not applied along the same 
crystallographic direction in the two twins. In twin A ,  the field was nearly parallel to the 
[ i , l , i ]  direction and in twin B slightly better aligned along the [1,1,3] direction. If UFe, 
is magnetically anisotropic, the anisotropy will manifest itself in a polarised neutron 
study by different magnetic structure factors for equivalent reflections from twin A or 
twin B (or for combined reflections). We measured the flipping ratios of several types 
of equivalent reflections from twin A ,  twin B or both twins. In each case they reduce to 
equivalent magnetic structure factors only if the moment direction is assumed to be 
parallel to the applied magnetic field. Essentially, with a twinned crystal we are per- 
forming two magnetisation experiments simultaneously. The early part of this paper 
discusses the geometry of the twinning, and we do this in some detail so that it may be 
of help to others faced with the same problem. 

As shown in table 9 the conduction-electron polarisation (p,pd) takes a reasonably 
large value of -0.25(2) pB per formula unit. It is significantly larger than that found in 
ferromagnets such as US (Wedgwood 1972) where the value is -0.15 pB. We ascribe 
this large value to hybridisation effects involving the transition-metal electrons, and it 
is interesting to note the value of -0.31 pB in LuFe, (Givord et a1 1980), and the large 
value suggested by experiments on NpFe2 and PuFez (Aldred et a1 1975). Note that this 
is difficult to calculate theoretically so the disagreement between theory and experiment 
in table 9 is not surprising. 

Given the large value of pL,pd we can also ask whether this could affect the analysis of 
the form factor on the U site. The answer is negative. First, we anticipate that most of 
the responses come from 4s electrons originating from the iron atoms, and this is well 
known to have a form factor that drops to zero by sin O / ; l  = 0.1 A-' (Shull and Yamada 
1962). If we take, for example, --0.1 pB associated with the U 6d-7s electrons, then 
even the free-atom form factor (Freeman et a1 1976) falls to zero by the Q value of the 
(2,2,0) reflection. Second, the form factor of these electrons will fall off even more 
steeply when solid-state effects are included, so that at the (1,1,1) reflection any possible 
contribution can be estimated as less than 0.006 ,pB, i.e. comparable to the error bar. In 
summary, it is clear that conduction-electron effects cannot be responsible for the 
unusual form factor at the U site (figure 6). 

The most important conclusion of the present work is the confirmation of the 
prediction of Brooks et a1 (1988) that the orbital and spin moments almost cancel on the 
uranium sublattice in UFe,. This results in a most unusual form factor (figure 6). Earlier 
experiments on UFe2 by Yessik (1969) and Lander et a1 (1977) were not aware of this 
form factor, indeed it is almost a unique situation, and hence their extrapolation to Q = 
0 to obtain the U moment are incorrect. Yessik's samples, according to work done on 
them by Aldred (1979), were non-stoichiometric and hence the Fe moment given in 
table 9 must also be suspect. 

At first sight the comparison with theoryin table 9 might seem poor, but the important 
point to realise is that theory predicts ,U" is smaller than either pl or ps. At this stage the 
theoretical calculations suggest the net moment is antiparallel to the Fe moment, and 
further refinements are clearly required to predict even smaller values of p l  and ,U,. This, 

_ _ _  

_ _ _  
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however, should not obscure the excellent overall trends which represent a new effect 
in orbital magnetism. 
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